Potential of high-performance liquid chromatography with photodiode array detection in forensic toxicology

BY

Tassanee Nawasitpaisan 52312314

OUT LINE

- Purpose
- Introduction
- The application of LC for Systematic toxicological analysis (STA)
- HPLC system
- Applications of HPLC to STA
- Conclusion

Purpose

 The potentials and limitations of high-performance liquid chromatographyphotodiode array detector.

1. Introduction

- Biological matrices -toxic compounds
 (e.g., blood, urine, stomach contents, tissues)
- Rational chemical-analytical called systematic toxicological analysis (STA)

1. Introduction (Continued)

- Systematic toxicological analysis (STA)
 - (1) To detect if the specimen contains any harmful substance(s);
 - (2) To identify the substance(s) involved;
 - (3) to determine the quantity of the substance(s) involved and to interpret the outcomes in regard to the reason for carrying out the analysis

1. Introduction (Continued)

- STA -depends on the quality of the analytical system
 - Thin-layer chromatography (TLC),
 - Gas chromatography(GC),
 - Mass spectrometers (MS)
 - High-performance liquid chromatography (HPLC)

HPLC – system

- Mobile phase
 - --Isocratic eluting
 - --Gradient eluting
- Pump
- Injection port
 - --Automatic
 - --Manual
- Column

HPLC - system (continued)

Detector

- --UV detector
- --Fluoresence detector
- --RI detector
- -- Electrochemical detector
- --Conductivity detector

HPLC - principle

2. The application of LC for STA

- 2.1 Column packing materials
 - 2.1.1 Underivatized silica
 - 2.1.2 Bonded-phase packing material
- 2.2 <u>Photodiode array detection</u>

2. The application of LC for STA

(continued)

2.1 Column packing materials

2.1.1 Underivatized silica

- Different brands
- Different batches
- Chromatographic conditions should be exactly defined and strictly followed
- different column systems (and different extraction procedures) in the analysis

2. The application of LC for STA

(continued)

- 2.1 Column packing materials
 - 2.1.2 Bonded-phase packing material
 - The most popular technique used in STA
 - Became clear that in reversed-phase chromatography
 - Developed a HPLC separation of more than two hundred toxicologically

2. The application of LC for STA (continued)

2.2 Photodiode array detection

- Useful in view of applications to STA.
- Reliability of the HPLC
- UV spectrum of a known compound
- Before running a library search

3. Applications of HPLC to STA

- 3.1. <u>Case 1: a fatal case of trazodone and dothiepin</u> <u>poisoning</u>
- 3.2. <u>Case 2: a fatality involving azide</u>
- 3.3. <u>Case 3: unexpected suicide by chloroquine</u>
- 3.4 <u>Case 4: cocaine, polydrug abuse and forensic</u> <u>evidence</u>

3. Applications of HPLC to STA

(continued)

Case studies

• 3.1. <u>Case 1: a fatal case of trazodone and dothiepin</u> <u>poison</u>

HPLC-DAD trace (displayed at 230 nm) of a blood sample extract. Peak identification:

(1) trazodone and (2) dothiepin.

3. Applications of HPLC to STA

(continued)

Case studies

• 3.2. <u>Case 2: a fatality involving azide</u>

HPLC-DAD trace (displayed at 230 nm) of a hydrolyzed urine sample extract. Peak identification: (1) dothiepin sulfoxide, (2) trazodone, (3) metabolites of nordiazepam and lorazepam (hydrolyzed), (4) metabolite of diazepam (hydrolyzed), aod (5) dothiepin

3. Applications of HPLC to STA (continued)

Case studies

- 3.3. <u>Case 3: unexpected suicide by chloroquine</u>
- Chloroquine; malaria infections
- HPLC-DAD screening method promptly led us to solve this forensic problem.

HPLC-DAD chromatograms (displayed at 240 nm) of (A) the deceased's appropriately diluted bile; peak 1 (tr: 5.70 min): 3,5-dinitrobenzoyl azide; azide level, 1283 p,g/ml. (B) An undiluted 5-txg/ml sodium azide standard; peak 1 (tr: 5.65 rain): 3,5-dinitrobenzoyl azide

3. Applications of HPLC to STA (continued)

Case studies

• 3.4 <u>Case 4: cocaine, polydrug abuse and forensic</u> <u>evidence</u>

HPLC-DAD trace (displayed at 230 nm) of the urine extract. Peak identification: (1) benzoylecgonine; (2) 3,4-methylenedioxy methamphetamine (XTC); (3) 3,4-methylenedioxy ethylamphetamine (EVA); (4) (I.S. j) 2'-methylbenzoylecgonine; (5) cocaine; (6) (I.S.2) 2'-methylcocaine.

Conclusion

• HPLC-DAD offers many advantages in terms of specificity, sensitivity, speed and ruggedness.

Application fields and excellent quantitative potential

THANK YOU